Natural Frequencies of the Classical Two-Spin XXZ System

S. Gade ${ }^{1}$ and E. Gade III ${ }^{2}$

Received December 9, 1991; final February 25, 1992
An expression for the ratio of the natural frequencies of the classical two-spin $X X Z$ system is determined. These are the frequencies of the angle variables and the expression does not require the system trajectories for its evaluation.

KEY WORDS: $X X Z$ model; Classical two-spin system; natural frequencies; action-angle variables.

The classical two-spin model with uniaxially symmetric exchange coupling ($X X Z$ model) is a two-dimensional integrable system for which analytical solutions for the system's trajectories have been determined. ${ }^{(1)}$ The two natural frequencies of this system are those of the angle variables in an action-angle variable analysis. The ratio of these frequencies is significant in that its value as a rational or irrational number signifies periodic or quasiperiodic trajectories, respectively.

In this paper an expression for the ratio of the frequencies is given in a form which does not use the system trajectories as is true for the expressions for the frequencies reported previously. ${ }^{(1)} \omega_{1}$ in the Appendix of ref. 1 is a time integral over a section of the trajectories.

In the following an expression for ω_{1} / ω_{2} is obtained in terms of the coupling constants J and J_{z} and the constants of the motion E and M_{z}, using the notation of ref. 1. In the Appendix of that paper the Hamiltonian is given as

$$
H=-J\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}\right)-J_{z} S_{1}^{z} S_{2}^{z}
$$

[^0]and the following expression is given for ω_{1} :
\[

$$
\begin{equation*}
\omega_{1}\left(M_{z}, E\right)=\tau_{2}^{-1} \int_{0}^{\tau_{2}} d t\left(\dot{\phi}_{1}+\dot{\phi}_{2}\right) / 2 \tag{1}
\end{equation*}
$$

\]

where $\tau_{2}=2 \pi / \omega_{2}$ is the period of $\phi_{1}-\phi_{2}, S_{1}^{z}$, and S_{2}^{z}. These variables have the same period since the expressions for E and M_{z} can be used to express any two variables in terms of the third, for example, $\phi_{1}-\phi_{2}$ and S_{2}^{2} as functions of S_{1}^{z}. Furthermore, ϕ_{1} and ϕ_{2} have the same period since ϕ_{1} and ϕ_{2} each change by the same amount in a time τ_{2} since that is the period of $\phi_{1}-\phi_{2}$.

Therefore, since the integral in Eq. (1) is equal to the change in either ϕ_{1} or ϕ_{2} that occurs in one cycle of S_{1}^{z}, Eq. (1) may be rewritten as

$$
\begin{equation*}
\omega_{1} / \omega_{2}=(2 \pi)^{-1} \oint\left(d \phi_{1} / d S_{1}^{z}\right) d S_{1}^{z} \tag{2}
\end{equation*}
$$

Rewriting the integrand in Eq. (2) as $\dot{\phi}_{1} / \dot{S}_{1}^{z}$ and using the equations of motion for these derivatives, the integrand can be obtained as a function of S_{1}^{z}. The result is

$$
\begin{align*}
d \phi_{1} / d S_{1}^{z}= & \pm\left[S_{1}^{z}\left(E-J_{z} S^{2}\right)+J_{z} M_{z} S^{2}\right] /\left[S^{2}-\left(S_{1}^{z}\right)^{2}\right]\left\{J^{2}\left[S^{2}-\left(S_{1}^{z}\right)^{2}\right]\right. \\
& \left.\times\left[S^{2}-\left(M_{z}-S_{1}^{z}\right)^{2}\right]-\left[E+J_{z} S_{1}^{z}\left(M_{z}-S_{1}^{z}\right)\right]^{2}\right\}^{1 / 2} \tag{3}
\end{align*}
$$

where S is the magnitude of the spin vectors, and the + and - values are used when S_{1}^{z} is increasing and decreasing, respectively.

Integrating over a cycle of S_{1}^{z} in Eq. (2) can be changed to an integration from the minimum to the maximum value of S_{1}^{z} as follows:

$$
\begin{align*}
\oint\left(d \phi_{1} / d S_{1}^{z}\right) d S_{1}^{z} & =\int_{\left(S_{1}^{z}\right)^{-}}^{\left(S_{1}^{z}\right)^{+}}\left(d \phi_{1} / d S_{1}^{z}\right)^{+} d S_{1}^{z}+\int_{\left(S_{1}^{z}\right)^{+}}^{\left(S_{1}^{z}\right)^{-}}\left(d \phi_{1} / d S_{1}^{z}\right)^{-} d S_{1}^{z} \\
& =2 \int_{\left(S_{1}^{z}\right)^{-}}^{\left(S_{1}^{z}\right)^{+}}\left(d \phi_{1} / d S_{1}^{z}\right)^{+} d S_{1}^{z} \tag{4}
\end{align*}
$$

where the plus and minus signs on the parentheses in the integrands refer to the expression in Eq. (3) with the plus and minus signs, respectively. $\left(S_{1}^{z}\right)^{+}$and $\left(S_{1}^{z}\right)^{-}$are the maximum and minimum values of S_{1}^{z}, respectively. They can be obtained as functions of E and M_{z} by solving for $S_{1}^{z}\left(E, M_{z}, \cos ^{2}\left(\phi_{1}-\phi_{2}\right)\right)$. The maximum and minimum values occur when $\dot{S}_{1}^{z}=0$ or $\cos ^{2}\left(\phi_{1}-\phi_{2}\right)=1$.

Finally, then,

$$
\omega_{1} / \omega_{2}=(\pi)^{-1} \int_{\left(S_{1}^{-}\right)^{-}}^{\left(S_{\bar{I}}^{\Sigma}\right)^{+}}\left(d \phi_{1} / d S_{1}^{z}\right)^{+} d S_{1}^{z}
$$

where $\left(d \phi_{1} / d S_{1}^{z}\right)^{+}$is the expression in Eq. (3) with the plus sign,

$$
\begin{equation*}
\left(S_{1}^{z}\right)^{ \pm}=M_{z} / 2 \pm\left(M_{z}^{2}-4 F\right)^{1 / 2} / 2 \tag{5}
\end{equation*}
$$

and

$$
\begin{aligned}
F \equiv & \left(J^{2} S^{2}-J_{z} E \pm\left\{\left(J^{2} S^{2}-J_{z} E\right)^{2}-\left(J_{z}^{2}-J^{2}\right)\right.\right. \\
& \left.\left.\times\left[E^{2}-J^{2} S^{2}\left(S^{2}-M_{z}^{2}\right)\right]\right\}^{1 / 2}\right) /\left(J_{z}^{2}-J^{2}\right)
\end{aligned}
$$

REFERENCE

1. N. Srivastava, and G. Müller, Z. Phys. B Condensed Matter 81:137 (1990).

[^0]: ${ }^{1}$ Department of Physics/Astronomy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.
 ${ }^{2}$ Department of Mathematics, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.

